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Abstract

A boundary element model which describes the reduced mode II and enhanced mode I stress intensity factors of
rough edge crack problem with worn asperities is enforced in this paper. The dilatant boundary conditions (DBC)
are assumed to be idealized uniform sawtooth crack surface and e�ective Coulomb sliding law. The boundary

conditions of the closed worn edge crack are well described. The resulting COD, CSD and the stress distributions
along the interface show the interference of a rough DBC edge crack surface. 7 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Abrasive wear can be de®ned as the surface damage caused by two surfaces moving past each other
while in contact as described in Fig. 1. The reduced mode II and the enhanced mode I stress intensity
factors of the center crack problem (with elastic crack tip and plastic crack tip (based on Dugdale, 1960
and Becker and Gross, 1988) and the edge crack problem, (with worn asperities), were presented for an
idealized sawtooth crack surface as in Young (1998) and also supported experimentally by the two
papers of Tong et al (1995a, b). However, a further investigation about the COD, CSD and the stress
distributions along the interface is still needed to have a clearer view about the interference of the rough
edge crack surface. In the simple model, wear occurs once the macroscopic tangential resistance stress tc
on the macro crack plane of the uniform sawtooth contact asperities reaches the yield stress in shear ty,
i.e., tc=ty=msc and ty � sy=

���
3
p

, where sc and sy are the macroscopic normal resistance stress and the
normal yield stress, respectively as described in Young (1998). The asperity is proposed to smear over,
therefore, it causes a constant crack opening displacement CODW as shown in Fig. 1. The smear
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actually is an irreversible process consisting of either plastic deformation or fracture of asperities. The
edge crack problem, i.e., a ®nite length crack is the half-plane, x1 > ÿa, with uniform sawtooth
surfaces, under mode II loading, as shown in Fig. 2, will be discussed here.

2. Closed worn crack

As discussed in Young (1998), the ®rst step in the BEM solution is to divide the cracked
homogeneous medium into two bodies (B1 and B2) along the plane of the crack referred to below as
the interface, as shown in Fig. 2. The interaction between the two bodies is included through boundary

Fig. 1. Two dimensional geometry of idealized sawtooth wear with asperity angle a, crack opening displacement CODW, and coef-

®cient of friction m.

Fig. 2. Shear loading of idealized sawtooth edge crack with partial asperities worn in half in®nite media.
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conditions relating the displacements and stresses on either side of the interface. The truncated interface

can be subdivided into three regions, i.e., an unworn DBC portion of crack region (I1) as described in

Young (1998), a ligament region (I2), a worn portion of crack region (I3). The truncated free surface of

the half-plane is denoted by I5 as shown in Fig. 2. Let gti and gui (g=1, 2 and i = 1, 2) denote the ith

boundary traction and displacement components, respectively, on the boundary of Bg. At points on the

ligament region (I2) the 2 displacement components and 2 stress components must be continuous.

Therefore, the boundary conditions of this region are �2t1�I2 � ÿ�1t1�I2 , �2t2�I2 � ÿ�1t2�I2 , �2u1�I2 �
�1u1�I2 , and �2u2�I2 � �1u2�I2 : This leaves �1t1�I2 , �1t2�I2 , �1u1�I2 , and �1u2�I2 , as the unknowns. At points

on the unworn DBC portion of the crack region (I1) the stresses are continuous (2 conditions) and are

related by tc=Gsc (1 condition), and g = h tan(a ) after g and h are expressed in terms of the

displacements on opposite crack face, where, G=(m+tan a )/(1+m tan a ) is the e�ective coe�cient of

friction, a is the asperity angle, g is the crack opening displacement, COD, and h is the crack sliding

displacement, CSD as in Young (1998). Rewriting these two equations in terms of gti and gui and

rearranging give the DBC, along with the usual continuity of stress �2u1�I1��1u1�I1 cot a�1u2�I1ÿ�2u2�I1 ,
�2t1�I1 � ÿ�1t1�I1 , �2t2�I1 � ÿ�1t2�I1 , and �1t2�I2 � �1=G��1t1�I1 � �s0 � �1=G�t0�, where, s0 is the applied

normal stress which is zero in this case, and t0 is the applied shear stress. The unknowns are �1t1�I1 ,
�1u1�I1 , �1u2�I1 and �2u2�I1 : As shown in Fig. 1 the asperities are assumed to begin to wear out when the

macroscopic tangential resistance stress, tc, reaches the yield stress ty, i.e., tc=ty=msc, ty � sy=
���
3
p

, and

COWD is the value of COD at that point right before wear. In terms of gti and gui this gives the wear

boundary conditions of the worn portion of crack (I3), i.e., �1t2�I3 ��1=m��1t1�I3 ��s0��1=m�t0�, �2t2�I1 �
�1=m��1t1�I3 ÿ �s0 � �1=m�t0�, �2t1�I3 � ÿ�1t1�I3 , and �2u2�I3 � �1u2�I3 ÿ CODW: The unknowns therefore,

are �1u1�I3 , �1u2�I3 , �1t1�I3 , and �2u1�I3 : The boundary conditions of the crack region will shift from I1 to

I3 once an asperity begins to wear. Thus, at each pair of points on the ligament region (I2) we have four

conditions involving eight quantities. Four of those are eliminated algebraically using the boundary

conditions, thus, leaving four unknowns at each point. Two coupled boundary integral equations,

written as a function of position on the boundary of a body, enforce all of the ®eld equations of

elasticity for that body. The two equations for each of the two arti®cially divided bodies are applied to

each discretized point on the interface, thus giving four equations and four unknowns at each pair of

interface points. At each of the boundary points of either of the arti®cially divided bodies consists of

other than the common interface, i.e., the crack regions I1 and I3, there are four boundary quantities to

be accounted for. The only condition we have used on free surface (I5) has been prescribed stress, thus,

leaving the two displacements as unknowns, with two equations provided by that body's two boundary

integral equations, i.e., �1t1�I5 ��1t2�I5 ��2t1�I5 ��2t2�I5 � 0: The unknowns are, of course, �1u1�I5 , �1u2�I5 ,
�2u1�I5 , and �2u2�I5 : The BEM consists of the discretization of the boundary surfaces and the numerical

approximation of the boundary quantities in the set of equations obtained from the boundary integrals

in Young (1994). We model the boundary, using straight-line elements, centered about nodes at which

the integral equations are applied. The stress and displacement are assumed to be constant throughout

each straight-line element. Therefore, the approximation allows their removal from the integral, resulting

in integrals of the known 2D Green's function which have been evaluated in closed form in Young

(1994). The ®nal system of simultaneous linear algebraic equations for the unknown nodal displacements

and stresses, can be obtained by using the Gaussian elimination method.

Figs. 3 and 4 show the stress distributions of the crack portion and the ligament portion, respectively,

for aluminum with a remote uniform distribution of applied shear stress, t0=200 MPa. The curves

marked `before' are for t0 just less than 200 MPa, which is the critical t0 for yield to occur, and the

curves marked `after' are for t0=200 MPa after wear has occurred. It seems that the crack wears

thoroughly when all asperities reach the shear yield stress ty simultaneously due to the uniformity of the

applied load. Both normal and shear stress obviously decrease after wear. However, in the ligament
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portion the normal stress is unchanged before and after wear, while the shear stress is obviously
reduced.

Fig. 5 shows the COD and CSD before and after the wear occurs for aluminum with a remote
uniform distribution of applied shear stress, t0=200 MPa. The curves marked `before' are for t0 just
less than 200 MPa, which is the critical t0 for yield to occur, and the curves marked `after' are for
t0=200 MPa after wear occurs. It seems that the crack wears totally when all asperities reach the shear

Fig. 3. Stress distributions in crack portion of edge crack problem in aluminum with worn asperities, 10 mm crack length, 200

MPa applied shear stress, 408 asperity angle, n=0.3, G=27000 MPa. Crack is between x1=0 cm and ÿ1 cm.

Fig. 4. Stress distributions in ligament portion of edge crack problem in aluminum with worn asperities, 10 mm crack length, 200

MPa applied shear stress, 408 asperity angle, n=0.3, G=27000 MPa. Crack is between x1=0 cm and ÿ1 cm.
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yield stress ty simultaneously due to the uniformity of the applied load. It is obvious that the CSD
increases after the wear and the COD remains the same.

Figs. 6 and 7 show the mode II and I stress intensity factors vs the applied shear stress intensity
factor KIIapp for steel with di�erent coe�cient of friction. As KIIapp increases both KII and KI increase
linearly. After passing the yielding point KII jumps to a higher value and keeps increasing linearly,

Fig. 5. COD and CSD of edge crack problem in aluminum with worn asperities, 10 mm crack length, 200 MPa applied shear

stress, 408 asperity angle, n=0.3, G=27000 MPa. Crack is between x1=0 and ÿ1 cm.

Fig. 6. Mode II shielding in edge crack problem in steel with worn asperities, 10 mm crack length, di�erent values of coe�cient of

friction, 208 angle, m=1.0, n=0.3, G=80000 MPa, sy=300 MPa.
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however, KI remains the same because there are no more changes in the COD after the asperities are
worn ¯at.

A parabolic distribution of shear stress applied along the direction to crack faces with maximum at
the crack mouth and zero at the tip give the results shown in Figs. 8 and 9 for steel with G = 80000
MPa, a=208, m=1 and sy=300 MPa. The wear moves towards the tip as tmax increases from zero in
increments as shown in Fig. 8. Once again KIIapp is the BEM calculated value of KII for the parabolic

Fig. 7. Mode I enhancement in edge crack problem in steel with worn asperities, 10 mm crack length, di�erent values of coe�cient

of friction, 208 angle, m=1.0, n=0.3, G=80000 MPa, sy=300 MPa.

Fig. 8. Mode II shielding and mode I enhancement in edge crack problem in steel with worn asperities, 10 mm crack length, para-

bolic distribution applied shear stress, m=1.0, n=0.3, G=80000 MPa, sy=300 MPa.
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shear loading on the non-interfering crack. The results in Fig. 9 show a non-linear relationship between
both KI vs KIIapp and KII vs KIIapp, which is clearly related to the non-linear dependence of wear length
on KIIapp.

3. Conclusions

A simple yield criterion for occurrence of wear and subsequent sliding on the worn asperity surface
has been presented. The asperities are assumed to begin to wear out when the macroscopic tangential
resistance stress tc reaches the shear yield stress ty where tc=ty=msc and ty � sy=

���
3
p
: The results show

that the crack wears totally when all asperities reach ty simultaneously due to the uniformity of the
applied load and the wear moves towards the tip as tmax increases from zero due to the parabolic
distribution of the applied load. Therefore, from the fracture point of view, KII jumps to a higher value
and keeps increasing linearly after passing the yielding point of the asperities, but KI remains the same,
i.e., the CSD increases after the wear and the COD remains the same in both cases. The results also
show a non-linear relationship between both KI vs KIIapp and KII vs KIIapp, which is clearly related to
the non-linear dependence of wear length on KIIapp.
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Fig. 9. Relationship between length of wear zone and maximum applied shear stress in edge crack problem in steel with worn aspe-

rities, 10 mm crack length, parabolic distribution applied shear stress, m=1.0, n=0.3, G=80000 MPa, sy=300 MPa.
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